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A mixed initiative approach to survivable path planning using imprecise
information

by Rohith Krishnan PILLAI

Safe robot navigation in human-robot teams during post-disaster scenarios such as
after an earthquake, is a challenge for robots due to the cluttered, potentially un-
known and hazardous environment. However, the human teammate’s advanced
cognitive abilities can be exploited to aid in safe robot navigation in the difficult to
navigate environment. This research aims to create a mixed initiative path planning
system that receives the human’s advisory information that models potentially un-
detected hazards in the environment and integrates it to the robots world view to
plan paths that are the most survivable - a path with low danger and high proba-
bility of existence. Current research mostly focuses on solely autonomous planning
using bayesian methods for map creation and updation, and uses precise spatial in-
formation through gestures and speech to provide human input to robots. However,
we consider human input that is inherently high-level and imprecise due to the use
of ambiguous language. Additionally we also use imprecise probabilities for map
creation and updation instead of bayesian probabilities due to difficulties in having
a generalizable model of the "human sensor" that can refine our estimates over time.
We discuss a method that uses a novel map representation based on imprecise prob-
abilities, integrates imprecise human input modeling potentially undetected hazard
to robot’s world map, and plans survivable and efficient paths using a modified
rapidly exploring random tree (RRT) algorithm.
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Chapter 1

Introduction

1.1 Motivation

The ability to perform a safe and effective navigation is at the core of many mobile
robotics tasks. It is necessary that the robot is able to move from one location in the
world to another to fulfill their mission. Although navigation is commonly intuitive
for humans, navigation in robots require some effort to compute and a number of
different approaches have been proposed over the years including potential field
methods to velocity-obstacle methods etc. Hence safe robot navigation becomes
challenging especially in cases when the environment becomes extremely cluttered,
hazardous, potentially unknown etc. Such conditions are indeed very common in
post-disaster scenarios such as when navigating in a building collapsed or partially
collapsed after an earthquake, a flood, or a fire. In these cases the debris can range
from small to very large sizes and the number of hazards for the robot are also very
high.

In this research we consider situations where humans and robots are working
together in human-robot mixed teams. Human robot teams are set to become more
common in the future and especially in post-disaster scenarios such as search and
rescue following a earthquakes and fires. The potentials of human-robot teams
greatly help increase team effectiveness in tasks such as search and rescue as both the
robots and humans can collaborate to increase efficiency in terms of coverage, bet-
ter on site control of robot systems, and making robots carry out mission tasks that
are simply too dangerous for human teammates etc. In such cases it is to be noted
that although the humans and robots in the team might have different missions, the
availability of the human in proximity to the robot means that robot behavior could
be modulated or even have the human teammate be an advisor that can potentially
help in case of challenging situations. This is especially the case with regards to haz-
ards that the robots sensors may fail to detect. We use this premise to extend it to the
idea of humans helping robots to better understand their surrounding for improving
both map building and safe navigation and planning.

Typical post-disaster scenarios have a world space that tend be partially un-
known to the robot, highly cluttered and contain hazardous features which makes
navigating such an environment difficult for local navigation approaches mentioned
before as the robot sensors cannot always guarantee safe navigation. For instance,
the presence of a puddle of water on the ground for ground robots, and really thin
electrified wires for aerial robots might go undetected leading the robot to make
navigation decisions that might not be seen as harmful to the robot in the robot’s
world model but however it is in the real world.

However, human team mates with their superior cognitive abilities are able to
observe and create models of possible obstacles and hazards in their surrounds
pretty easily, and communicating such information to the robots should allow the
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robots to plan paths during navigation that are much safer and avoid these obsta-
cles and hazards that were pointed out to them. For example, when a robot fails to
detect a hole in the floor in it’s surroundings and plans a path that runs through it.
In this case the human teammate can notice the robot moving towards the apparent
hazard and is able to point this out to the robot. Then the robot could in turn update
it’s world model to one that prevents running into the hole in the floor. In this case
the human actively took the initiative to provide the additional advisory informa-
tion about the hazard , hole in the floor, to the robot. On the other hand the robot can
also possibly take the initiative and ask the human for information when the robot
is unable to find any possible path that is survivable to it’s target. This is an exam-
ple of mixed initiative system which according to Jiang and Arkin, 2015 is defined
more generally as "a collaboration strategy for human-robot teams where humans
and robots opportunistically seize (relinquish) initiative from (to) each other as a
mission is being executed".

More generally in these scenarios, the human-robot team has to navigate through
the environment in a manner that can ensure the safety of the team members, both
human and robot, and also through paths that actually exists and are traversable for
the robot. In particular we want the robot agent to be able to navigate in a manner
that is both survivable and efficient, defined as follows.

• Survivable: A path exists between the two points in space that can be safely
navigated by the robot system, without harming the robot. The survivability
metric for a path involves the max risk/probability of occupancy of all the
poses given by the path.

• Efficient: The amount of time taken to navigate the path and the smoothness
of the path with respect to an optimal baseline.

1.2 Challenges in robot navigation in human robot teams

However there are a few challenges associated this type of a mixed initiative sys-
tem for safe navigation. The first challenge is that the robot itself might not be able
to detect the hazards or obstacle well enough to be able to safely avoid it during
navigation, not even over time. This could mean that without any external input
any path computed through this region has a high chance of being non-survivable.
Hence any hazard or obstacle that is not modeled could possibly harm the robot,
and therefore timely providing the advisory information is very important.

Another challenge in mixed initiative based path planning involves the sporadic
nature of the advisory information. This is due to the fact that it is not possible nor
reasonable for the human to always keep an eye on the robot and regularly provide
advisory information as the human would most likely be busy with their mission.
Hence the input only arrives in some extreme situations or when the human notices
the robot is acting in a manner that is indicative of not being aware of a hazard in its
surroundings. Therefore we need to be able to need to be to find survivable paths
with the irregular frequency of advisory information. Since there might be no way
to prevent running into a hazard if neither the human nor the robot is aware of it, in
this research we assume that the human is able to provide the advisory information
at some point prior to any possible run-ins with a hazard/obstacle.

The most difficult challenge is the fact that the language that is involved in the
communication of the advisory information is inherently imprecise and ambiguous.
Here the ambiguity of the advisory information is the result of the inherent nature of
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natural conversational language that is commonly not extremely precise in describ-
ing spatial relations, in the sense that no precise geometric information is usually
provided regarding the spatial context. For example, consider the example of the
robot being given human advisory information regarding the hole in the floor. In
this case the human input is likely going to be along the lines of "hey watch out for
the hole in the ground pretty close, in front and to the left of you". This is in stark
contrast to an input that says "hey there is a hole in the ground exactly a square in
shape, at 35.5 degrees and 2.34 meters away from you". Comparing the former and
the latter it is possible to see that the former is most likely the format of sharing
information about an obstacle or hazard to the robot as opposed to the extremely
detailed input of the latter (that could, for instance, be provided to the robot by an
external artificial sensor system). It is important to see that the former is however
very ambiguous about providing much information about the characteristics of a
hazard that we to model such as the size of the hazard, it’s shape (which could be
irregular and hence extremely difficult to describe such as the shape of a puddle
of water on the floor), the distance from the robot, and it’s orientation with respect
to the robot. Hence the system needs to create a quantitative probability model,
by converting from the imprecise information provided to some sensible ranges in
distance, shape, size etc. in order to effectively path plan and perform safe naviga-
tion. However, there is no way to create a prior model and revise it over time using
Bayesian methods to reduce our uncertainty as there is no way to model a general-
ized "human sensor". Hence we cannot use Bayesian methods and have to resort to
using imprecise probability to model the hazard. Imprecise probabilities are in the
simplest sense a range of the probability for an event occurring, flattened with just
an upper/max and lower/min probability in the range representing the probability
of the event itself. The use of imprecise probabilities and its detailed justification can
be found on chapter 2. Hence the imprecise information has to be modeled into an
imprecise probability and it is not obvious how this should be carried out.

Although the idea of having a human teammate provide advisory information
to improve safe navigation of the robot might be practical, it certainly has a few
challenges that need to be addressed. The hardest of which is the not so obvious
method of quantifying and building a model of the hazard from very vague and
imprecise information using imprecise probabilities. The other challenges such as
the sporadic frequency of the human input and the fact that the robot itself might
not be able to model the hazard means that we need a reliable method for integrating
the model and planning a survivable path on it.

1.3 Related Work

This work is related to two different topics, which are human robot interaction and
survivable path planning. Human robot interaction is a key point in our research as
it is needed to be able to convert the human advisory information into a model that
can be used in path planning. There is a lot work currently in human robot inter-
action that tries to identify methods to make feedback from robots more apparent,
find new methods to communicate more intuitively with the robot, and even about
making the robots intentions known and transparent to the humans. Goodrich and
Schultz, 2007 captures some of the considerable amount of work in this area. If we
consider the relevant prior work in human robot interaction about the methods to
model spatial information, then most of these look at methods that provide precise
spatial information to the robot, such as Skubic et al., 2004 who use a multi-modal
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system with gestures and speech to communicate the location or direction of move-
ment or obstacles to the robot. The paper also studies more about extracting the
best fitting spatial descriptions of a world or obstacle from its grid map represen-
tation, and discusses ways that it could be used in human and robot dialog. Both
Skubic et al., 2004 and Lei et al., 2014 use speech based systems and or multi-modal
systems for providing the robot with commands. We only consider using speech
based human input in our system as it is most likely that the human teammate has
their hands busy during scenario such as search and rescue. This input is also how-
ever not commands to the robot but rather only additional advisory information to
model potentially undetected hazards by the robot. However most importantly our
research differs in the fact that we deal with imprecise rather than precise spatial
information available from the human. This due to the fact that we only receive
imprecise spatial information through the speech from the human and there are no
other ways to clarify or to reinforce the information provided. This is also why we
have to resort to working with imprecise probabilities rather than the Bayesian prob-
abilities which are updated over time.

The second subfield that our research is related to is of survivable path planning.
Some recent research in the field uses human movements in the surroundings to
predict the location of certain objects such as doors for navigation as shown by Oh
et al., 2015. Similarly other research such as Cho, Park, and Lee, 2015 and Kim and
Lee, 2013 look at the aspect of survivable path planning in terms of scenarios in the
battle field where the robot has to stay safe and avoid line of fire or being taken out
by the enemy. Again this is in stark contrast to search and rescue situations where
there are not too many wide open areas to navigate through but rather cluttered
spaces with many possible hazards that unlike the prior might not be detected by
the sensors. Other works mostly focus on multi-robot formation survivability across
adversarial environments Shapira and Agmon, 2015, by picking the multi-robot for-
mation that is most likely to withstand disturbances while navigating through a cer-
tain map. While this may be of use in search and rescue, it still does not address
the issue of planning in partially unknown and cluttered environments. Also to be
noted is that we consider the case on single robot navigation and hence don’t enjoy
the same redundancy and distribution of a multi-robot system. However, all these
different works use survivability in a different scenario to our post-disaster scenario
and also all employ Bayesian methods in order construct and path plan on the map.
In our research we avoid using Bayesian methods and instead opt for using impre-
cise probabilities for building a map representation of our hazards and world map
for the robot.

There is also some theoretical work on planning for survivability or traversabil-
ity especially in terms of graph based problems. Some of these include the Canadian
traveler problem that tries to find a path from one node to the target but the prob-
ability that edge exist or not is only discovered on arrival. Problems such as the
stochastic shortest path and robust path optimization are two path based problems
that are also related to the idea of finding a path between node given that the edges
costs are probabilistic.

1.4 Research problem statement

In light of the challenges mentioned and the related works in this field, the research
question that we tackle in this thesis can be summarized as:
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How can robots use externally provided, sporadic imprecise information to
perform safe navigation by adaptively building maps and planning paths that are

survivable and efficient?

The main research question can be further broken down into three sub questions
that we need to answer:

1. How to interpret human “imprecise sensor” by using imprecise probabilities?

2. How to integrate imprecise probabilities map with the robot sensor map to
create a new imprecise probability map?

3. How to plan on this map to find the most survivable paths?

1.5 Research contributions

By addressing the three challenges above, we can single out threes main research
contributions:

1. representing human input as imprecise sensors and the use of imprecise prob-
abilities to model it;

2. building maps using imprecise probabilities;

3. planning for the most survivable path using a modified RRT based planner
(2.1);

4. building an entire system chain that integrates the above three aspects

The next chapters elaborate on the background and methodology of each of
these three contributions and the implementation of it using tools such as ROS and
Gazebo.
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Chapter 2

Background

2.1 Path Planning Requisites

Path planning refers to computing a sequence of robot poses in its configuration
space so as to identify a feasible motion for the robot for going from an initial con-
figuration to a target configuration. For instance, finding a way to move from the
arm flexed configuration to the arm relaxed configuration for a robotic arm. In our
case, considering mobile robots such as ground or flying robots, path planning refers
to finding a sequence of poses in the world through which the robot can move to go
from a starting location, most usually the current robot location to a target location,
usually where the mission task has to be committed.

However, in order to plan paths between positions in space it is imperative that
we have both a representation of the world around the robot and also knowledge
of where the robot is in space. In absence of prior knowledge, this can be done by
the robot itself by a procedure known as simultaneous localization and mapping
(SLAM), which aims to continuously localize or figure out the robots pose with re-
spect to its surroundings or the world frame and then map to fill in the structure and
arrangement of the objects in the world around it. SLAM is a very well studied pro-
cedure and uses methods such as extended Kalman filters and Bayesian filters(e.g.
FastSlam Montemerlo et al., 2002), and are used extensively by mobile robots espe-
cially once placed in potentially unknown environments. Although there are many
map representations that can be used, the most common and basic representation is
of the occupancy grid Elfes, 1990. The occupancy grid is a discretization of the world
into multiple cells which are of a fixed size, similar to pixels in image. The map is
comprised of an 2D array of these cells with each cell containing a value that repre-
sents the probability of the cell’s counterpart in the real world being occupied, due to
some part of an obstacle falling within this cell. The idea of the occupancy grid can
also be extended to 3D where each cell is called a voxel and similarly contains the
probability of the cell being occupied. The occupancy gird can be represented more
efficiently by quadtrees or octrees, which recursively divides the space into 4 and 8
respectively. This creates a tree structure whose depth increases the resolution of the
pixel or the voxel. In this representation hence large empty occupancy gird spaces
can be represented by the value of a single node with the least depth in the tree over
the area. It also allows easy computation in viewing the same map with various
resolutions simply by changing the tree depth. In our research we use the Octomaps
ROS package Hornung et al., 2013 to conduct SLAM and create a 2D occupancy grid
of our sensor based map. Path planning can be accomplished using many different
techniques such as potential field based methods, graph based methods, road-map
based methods, and sampling based methods etc. In this research we use a modifi-
cation on a sampling based method called Rapidly Exploring Random Trees (RRT)
LaValle, 1998. We use this method as RRTs work very well in practice and they are
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very fast at finding a path, although it does have the problems that come with being
a sampling based approach of not being able to guarantee that a path will be found,
although they have probabilistic asymptotic guarantees. The RRT works by build-
ing a tree over many iterations until the target point is added to the tree. At each
iteration a random point in the configuration space is is picked and it’s closest node
in the tree is found. If the random point is within a certain range (δ) of the closest
node the random point is added to the tree. If not then a point that is δ away but
in the direction of the random point is added to the tree. In this way the tree if left
to grow unbounded will fill up any free space creating a road-map. For this reason
RRTs are also considered to be a road-map based approach to path planning. The
figure 2.1 shows an example output from an RRT.

FIGURE 2.1: An example of an output from an RRT showing the tree
in black and the path in green.

It is important to distinguish between global and local planning. Global planners
usually plan a general path between two points where the target could be very far
away. The global planner is returns a set of waypoints that breaks down the global
path to smaller paths. The local planner receives the waypoints and planning paths
between the two waypoints by taking into consideration the motion constraints of
the particular robot as well as employing obstacle avoidance techniques during local
navigation. In our research we aim to build a global planner that finds the most sur-
vivable path between the robot and its target, and so the final output of the system
is a set of waypoints describing the path to be locally planned for by a local planner
that accommodates for the robots motion constraints.

2.2 Imprecise Probabilities

As we have pointed out, the information that we get as input from the human team-
mate is inherently imprecise and to model this imprecise information using Bayesian
methods presents some issues. This method usually works well for other sensors
such as laser sensors in order to create an occupancy grid and build a map of the
world, but extending it to model human input has many issues. To understand why
this is the case we need to inspect the way Bayesian methods are used in map build-
ing and updating.

Bayesian map building and updating requires two key components:

1. a priori probabilities
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2. a way to update the probabilities over time

The method to update the probabilities involves updating the occupancy prob-
ability of a cell in a map given a new piece of information or evidence. Usually the
evidence providing entity is a sensor with its own known probability distribution
model. Then the update of the prior probabilities is done using the Bayes formula
2.1 shown below.

P(D|Sm) =
P(Sm|D) · P(D)

P(Sm)
(2.1)

In this case the random variables D represents the probability that a specific cell
in the occupancy grid is occupied and Sm is the observed value returned by the
sensor. With the update, the probability of the cell being occupied given the new
observation by the sensor is calculated as the product of the probability of the sensor
returning that particular value given the cell is occupied times the probability of the
cell being occupied based on some a priori model, divided by the probability that
the the sensor would even return the observed value.

However, assuming that we can satisfy the first requirement of having prior
probabilities for the map, this method of updating probabilities cannot really be
used with humans providing imprecise information. This is because even though
the information is provided by a human, there is no way to make a reliable model
for the human that generalizes to different people. Even with a single person we
would need to empirically build this model. This means that we do not have a
known probability distribution for the observation made by the human nor for the
probability distribution of the human observation given the occupancy value of the
cell. This prevents us from being able to use traditional Bayesian methods for build-
ing and updating our maps, and forces us to use an alternative method that does not
rely on such such known probability distributions models. An example of trying to
model a general "human sensor" specifically for the quantification of proximity to a
hazard please look at experiment 4.3.1.

Our choice to overcome the mentioned issues, has been to use imprecise proba-
bilities as an alternative to Bayesian probabilities. Imprecise probabilities allows us
to model the inherent imprecise nature of the human information, by not forcing us
to fix a precise probability to an event, but rather a range. In the crudest sense, impre-
cise probabilities, can be thought of as interval probabilities with an upper estimated
probability and a lower estimated probability associated with each event (Augustin
et al., 2014). On one hand a Bayesian probability value can be thought of as the most
likely value for the probability of an event as shown by the distribution curve in 2.2,
while the imprecise probability is a uniformly distributed uncertainty between the
lower and upper probability values. Imprecise probabilities also provide us a way
to automatically capture the confidence in the probability of an event through the
range in upper and lower probability, which is not possible with Bayesian proba-
bilities. The closer the upper and lower probabilities are to each other the more the
confidence in the probability, a fact that we can use to our advantage when working
with imprecise probabilities.

Imprecise probabilities are a generalization on Bayesian probability, as it con-
verges to Bayesian probability when the upper and lower probabilities are the same.
The upper probability is considered to be an estimate of the plausibility of a certain
event, where as the lower probability is considered to the be the certainty of an event
as described by Miranda, 2008. Unlike with Bayesian probabilities where we have
one value for the probability of occupancy per cell, we need a different represen-
tation for imprecise probabilities. Therefore we use two separate occupancy maps
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FIGURE 2.2: How imprecise probabilities and their maps (bluish, red-
dish) differ from Bayesian probabilities and map (gray)
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when representing imprecise probability occupancy grids, the belief map with all
the lower probabilities of the cell being occupied and the plausibility map with the
upper probabilities of the cell being occupied.This can be seen as the two maps at
the bottom of the figure 2.2 with the reddish colors representing the upper and the
bluish colors the lower probability.

The imprecise probability maps are updated by using an autoregressive mov-
ing average (ARMA) based sliding window moving average. Chapter 3 contains a
detailed explanation of the imprecise probability updation procedure.

2.3 Tools used: ROS and Gazebo

In this research we create a system that allows for survivable path planning using im-
precise information built on the ROS platform. The Robot Operating System (ROS) is
an open source middle-ware created for robotics that allows the creation of robotics
applications that can work on a variety of different robots. Hence building a ROS
package for survivable path planning incorporating human information helps to
create an application that is very versatile and portable and can enjoy the reuse of
existing tools.

ROS works based on a publish-subscribe model. A package created in ROS
works by individual programs called nodes that subscribe to certain topics, work
on the information it collects and possibly publish to a different topic. A package
have many different nodes which communicate with each other by passing infor-
mation through topics. A topic is a stream of broadcast messages of a defined type.
For example, occupancy grids can be a type of message in ROS. Nodes can choose to
receive the messages broadcast on a certain topic by subscribing to it, and similarly
they can send messages on a certain topic by publishing messages on the topic. A
node can be run by using the command rosrun < package name >< node name >.
It is possible to have multiple nodes run at the same time with certain parameters by
creating and running a launch file. A launch file can be run by using the command
roslaunch < package name >< launch file name >.

In order to test the package that we are building, we use the Gazebo simulator.
The simulator allows us to test our programs to and to see the actions of the pro-
gram on the robot etc. The Gazebo simulator can be launched with many different
worlds configurations that are defined by an XML file with the .world extension that
specifies the entities and their characteristics and pose in the world. Moreover, the
rviz tool allows to display data in real-time, such as visualize the data from different
topics like the occupancy grid. Similarly the octovis tool allows us to visualize in 3D
the octomap that we create and save using the Octomaps package.

2.3.1 System overview

The architecture of the ROS package is as shown in the figure 2.3. There are a total
of five different nodes in the package that are implemented, and we use a custom
launch file to set the parameters of octomap and run the octomap node from the the
launch file. The gazebo provides the sensor data and the odometry and the creates
the world in which we can move the robot around. The local planner is a placeholder
for how any local planner can be integrated into the system by subscribing to the
global planning map to create the local cost map and using the waypoints from the
global planner to plan local paths between the waypoints. The detailed list and
explanations of the purpose of each node/component is as given below.

www.ros.org
gazebosim.org
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• genModels: Creates a set of worlds that are of a specific density of coverage
with respect to obstacles, and also generates the accompanying world file and
initial map file which is later used by updateIPMAP to build and update the
imprecise probability maps.

• textInput: Provides a text based interface to inputing spatial specifications of
a human input which is then sent without processing to hi2IPMAP.

• hi2IPMAP: Translates the spatial specifications received into numerical ranges
for the direction, range and also models the human input by creating the up-
per and lower probability maps for the human input. This is then sent to the
updateIPMAP node to be integrated.

• updateIPMAP: This node is one of the most important nodes in the package as
it handles the updation of the current imprecise probability maps using the
projected map received from the octomap node and as well as the integration
of the human imprecise probability maps to the current maps. This node is also
creates and publishes the most up to date planning map for the iispPlanner.

• iispPlanner: This node needs to be given the target position to get to and the
maximum risk that the navigation should accept. It then uses the planning
map to find the most survivable path using our modified RRT algorithm from
the current robot pose to the target position and publishes the waypoints of
the global path, if one is found. If no such path exists then it asks the human
whether the try again by possibly increasing the max risk threshold.

FIGURE 2.3: The architecture and the relations between the nodes
in the package are shown. The circles are individual nodes in the

package, and the topics are on the lines between them.
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Chapter 3

Map creation and update based on
robot sensors

3.1 Introduction

This chapter discusses the method used in the creation and updation of the impre-
cise probability maps, the belief map and the plausibility map. There are three main
components in this procedure: the generation of the initial maps that the robot has,
the SLAM map created by the robot using its sensors and the final imprecise proba-
bility maps that are updated.

3.2 Generating initial maps

In post disaster scenarios it is common that some maps of the area prior the disaster
are available, although we cannot know how much of the initial map is still reliable
as the disaster such as a earthquake can easily caused many possible landmarks and
structures to have collapsed. However the initial map still provides a good starting
point, although we need to update it with data that we get from our sensors. Also
since we are planning global paths in the world we need some initial map to both
locate the target and to plan the global path from the current robot location to it. For
the research, we will be using some synthetically constructed world using gazebo to
abstract some cluttered and potentially unknown situation.

FIGURE 3.1: Gazebo simulation of an auto generated world map with
density 0.1

To generate the initial maps of the world the node genModels first creates a world
file with the robot at the origin and multiple convex obstacles modeled by either
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FIGURE 3.2: Auto generated occupancy grid map of world 3.1

a cylinder or a cube placed randomly in different places in the world. The node
is provided a density range and a bounding box using which the worlds will be
generated to fit. The density of the world is determined by the percentage of area
that makes up the obstacles versus the total area of the bounding box that makes up
the "mapped" section of the world. The bounding box determines the dimensions
of the occupancy grid that is created of the auto generated world. The figure 3.1
shows a world that is randomly generated by genModels and figure 3.2 the auto-
generated occupancy grid of the same world. The generated occupancy grid map’s
meta information is stored in a yaml file which defines the resolution of the map,
it’s origin with respect to world frame, and also the location of the pgm binary file
containing the data of the map. This map is then later used by other nodes such as
the updateIPMAP node that updates the current versions of the imprecise probability
maps of the world.

3.3 Map creation from sensor data

FIGURE 3.3: Octomap created using point clouds from depth camera

The sensors of the robots such as the depth camera are used to create a sensor
map from the SLAM procedure. The ROS package Octomap is used to create the
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projected 2D occupancy grid of the world. The world that was created in the pre-
vious section is mapped using SLAM and an octomap representation of the map is
created as shown in figure 3.3. The depth camera of the robot is used to produce
point clouds, which are points in space that are treated as occupied. Then these
point clouds are used to create the octomap representation of the world around the
robot. However during the creation of the point cloud the points above the robot’s
height is ignored as the robot will not run into the obstacle that might be possibly
hanging from the ceiling of the building. The octomap is finally then projected on
to the 2D ground plane to create the occupancy grid map of the world as shown in
figure 3.4. The probabilities of occupancy are given in a range of 0 to 100 for each cell
of the grid. This map is published by the octomap node at a frequency of 2.5 hz, and
is subscribed by the updateIPMAP node that goes on to update the current imprecise
probability maps.

FIGURE 3.4: The world layout (left) and Occupancy grid map created
by projection to ground plane(right)

3.4 Map updation from sensor map

The 2D occupancy grid map created from the sensors during SLAM is received by
the updateIPMAP node and the node then updates the probabilities of the upper and
lower probability maps by using an autoregressive moving average (ARMA) tech-
nique. This is the method that we adopt for updating the probabilities because we
cannot use bayesian methods to update our prior probabilities from our initial map
as we do not have a probability distribution from the sensor model directly but
rather only get the probabilities from the occupancy grid created by it. To make
an ARMA up date we only need to update the probabilities with a sliding window
moving average as the Gaussian white noise can be assumed to be part of the sensor
input. Hence to do the updates we use the formula 3.1, where Cij,t is the occupancy
grid value of the cell at row i column j at time t, Mij is the number of sensor maps
that contributed to the cell Cij from time t− 1 to t− k, k is the number of inputs in
the sliding window, Iij is value of cell Cij of the current map we have, and Cij,t−k is



16 Chapter 3. Map creation and update based on robot sensors

the value of cell Cij at time t− k.

Cij,t =
1

Mij + 1
(Iij +

Mij

∑
k=1

Cij,t−k) (3.1)

Using this update formula we revise the cell values for the upper and the lower
imprecise probabilities. In our implementation we use a sliding widow size of 9. The
result of this can be seen in the figure 3.5. The probabilities of occupancy of the map
are given by the gray-scale value of the cell, and hence a darker color represents a
higher probability of occupancy. If there is no human information that was passed
to the node at this point then the current imprecise probability maps are converted
to a planning map and then our modified RRT algorithm is used to find the most
survivable path as explained in chapter 5.

FIGURE 3.5: Occupancy grid map of upper probabilities/ plausibility
map
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Chapter 4

Modeling using imprecise human
inputs

4.1 Introduction

While in the previous chapter, the use of robot’s sensor inputs where used to create
and update imprecise probabilities maps, in this chapter we discuss the modeling of
the imprecise human input and its integration into the world map. The process of
incorporating the human input involves up to three different nodes in the package,
and is a key aspect of the survivable path planning system.

4.2 Parsing human advisory information

The human input is introduced by speech to the robot and we use an off the shelf
API of the Google speech recognition system to convert all our input from natural
language to the spatial specification data structure. Due to relatively low accuracy
and high latency of the speech recognition system, we proceeded to provide the
human input in an spatial specification parsed format. The spatial specification is a
custom data structure that contains the following important information needed to
capture the qualities of the imprecisely described hazard or obstacle.

• Object: This is the type of object and usually contains information regarding
the size of the obstacle as well. The possible currently recognizable sizes are
small and large which are modeled to be 0.25m and 1.0m respectively. Not
providing any clues regarding the size of the obstacle/hazard makes the node
assume medium size with the 0.5m long. These numbers were chosen a they
were the ranges of sizes that obstacles in the synthetically generated world,
and hence we assume that the obstacle modeled would be in a similar size
range as well.

• Range: This is the distance that the obstacle/hazard is from the robot. There
are two currently recognizable ranges, close and far. Please see the 4.2 for how
this is interpreted into a numerical range.

• Direction: This is the direction in which the obstacle/hazard is located in the
8 region template as shown in figure 4.1 with respect to the robots current
orientation.

• Message: This is any additional message that human would like to give. This
field is used to allow for new vocabulary to be tested out, and or show the
whole human input message for further modification of the model. Usual mes-
sages include "watch out!", "careful!" etc.

https://pypi.org/project/SpeechRecognition/
https://pypi.org/project/SpeechRecognition/


18 Chapter 4. Modeling using imprecise human inputs

4.3 Converting spatial specifications to numerical ranges

FIGURE 4.1: Template for organizing spatial regions around the robot

Even with the human input parsed into the spatial specifications it needs to be
converted into numerical ranges before the model can be used to update the impre-
cise probability maps. The primary method of converting the spatial specification
to numerical values is template matching. The figure 4.1 shows the 8 directions that
are used when defining the location of the obstacle/hazard with respect to the robot,
and these directions are replaced by Cartesian unit vectors by the hi2IPMAP node.
For the sake of simplicity, we have used 8 slices, but more can be used, for increased
precision. More slices, means more "priors", which precisely what we want to avoid.
The size determined from the imprecise information is used to scale the unit convex
model that is detailed in section 4.4. However, to convert the distance of the robot
from the obstacle/hazard needed more context and cannot be easily done especially
from just the imprecise human information as a being close or far. Since the notion
of distance is very subjective we held an experiment to get empirical values to create
a general model in order to be able to convert the imprecise subjective term of close
and far to quantifiable value. Once these spatial specifications have been converted
to numerical values it can then be integrated into the imprecise probabilities maps.

4.3.1 Experiments on proximity

FIGURE 4.2: The experimental setup with the view from the partici-
pants point of view

With the human input being inherently imprecise we need a method or model to
quantity the proximity of the robot to different obstacles/hazards from the imprecise
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FIGURE 4.3: The graph shows the positive correlation between dis-
tance of the robot to the obstacle and the robot velocity

FIGURE 4.4: The graph shows the positive correlation between dis-
tance of the robot to the obstacle and the size of the obstacle
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information. Hence, we aimed to collect empirical data to be able to build a model
to quantify the ranges of distance from the spatial specification. However, instead
of having a fixed value for each modeled distance, it may be possible that other
pieces of information such as the robot’s current velocity and the obstacle’s size that
might affect the distance of what is termed "close". Therefore, the major question
that the experiment tries to answer is does the velocity of the robot or the size of
the obstacle change the "close" distance across a general audience. For the sake of
the experiment, each of the participants were given the definition of close to be the
least distance to obstacle needed by the robot to still be on a collision-free path at
a constant velocity. The experiment setup from the participants point of view is
shown in figure 4.2. After reading out the definition of "close" to the participants as
a prompt, the robots were made to run straight towards the obstacle at a velocity
that was randomly chosen from the range of 0.2 to 1.6 m/s with the medium sized
box as the obstacle. The participants were given the instruction to stop the robot
as soon as they thought that the robot was close to the obstacle given by the boxes.
There were 3 sizes of the boxes used as well with a constant velocity of 0.8 m/s, to
see the effect of obstacle size to the "close" proximity. With a 32 data points from 8
different participants we got the following results as shown by the figures 4.3 and
4.4.

From the two resulting graphs we can see that there exist some positive correla-
tion between the "close" distance and the velocity of the robot. As the robot increases
it’s velocity the "close" distance seems to increase. This can also be seen for the
"close" distance and the size of the obstacle, although there does seem to be a large
variance in distances for both. Using this observation we tried to create a model for
the translating the "close" term with respect to the current velocity of the robot by
using the line of best fit and this is used to calculate the distance from the obstacle
during human input merging to the map in updateIPMAP. The distance versus size
data was not very helpful as we were dealing with categorical values for the sizes
which are not very generalizable.

FIGURE 4.5: An ellipsoid convex embedding

4.4 Modeling the hazard using a convex shape

Now that we have some numerical and quantified parameters, we need to be able
to create an imprecise probability model to be used to integrate into our current IP



4.5. Integrating the human input into IP map 21

maps. Although we converted the size, orientation, and distance to numerical val-
ues that we can work with, the shape of the obstacle is something that we cannot
determine from the human input, especially if no such information is explicitly pro-
vided. In such a case it might be better to model the obstacle as a symmetrical shape
as our uncertainty is high about its shape properties and also there does not exist
any preferential direction of error. Hence we use a ellipsoid to model the probability
of the obstacle from the human input. We used an ellipsoid because its parametric
form allows us to easily modulate its eccentricity if we do receive such additional
information, it can be compacted in a pair of parameters, and the convexity of the
ellipsoid is amenable and "convenient" for path planning. Since we are modeling
an uncertain obstacle, the model we make must have a confidence that reduces to-
wards the edges of the obstacle, and to model this we use the lower hemisphere of
the ellipsoid to model the upper probabilities and the upper hemisphere to model
the lower probabilities. This makes sure that even though the median probability
at all points in the obstacle is at 0.5, the confidence in the probabilities decreases to-
wards the edges and increases towards the center of the model. The figure 4.6 shows
the upper and lower probabilities of the obstacle modeled. Notice from the image,
the graduation in color from the center for both the imprecise probability obstacles,
where the darker colors indicate values close to 1.

FIGURE 4.6: Template for organizing spatial regions around the robot
using a convex embedding

4.5 Integrating the human input into IP map

The modeled human input is received by the updateIPMAP node as imprecise prob-
ability maps. This model however is then needed to update our current imprecise
probability maps. This update is done through by first finding the location of the
robot on the map and then finding the intended location of the human input pro-
vided obstacle on the map and then replacing the upper probability values with
max value between the current cell value and the corresponding cell value from the
modeled human input upper probability map. Similarly the the lower probability
values are replaced with with min value between the current cell value and the cor-
responding cell value from the modeled human input lower probability map. This
update criteria ensure consistency in the definition or imprecise probabilities and
also helps integrate the human input into the imprecise probability maps as shown
in figure 4.7.



22 Chapter 4. Modeling using imprecise human inputs

FIGURE 4.7: The imprecise probability maps with integrated human
input. Upper probabilities on left, lower probabilities on right.
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Chapter 5

Path planning

5.1 Introduction

The output from the updated imprecise probability maps are used to find the most
survivable paths in the map for the robot to navigate the environment safely. There
are two main components in this task, the first of which is to create a unified plan-
ning map from the imprecise probability map. The second component is the method
of finding the path from the current cell to the target cell using a modified RRT to
find the most survivable path in the planning map.

5.2 Creating the planning map from IP maps

FIGURE 5.1: The planning map with integrated human input inte-
grated in the middle of the bottom right of the map

The imprecise probability maps are good representations for updating and keep-
ing track of the obstacles, hazards, and to integrate human input into. However in
order to be able to path plan we need a unified map. This is because path planning
with two different sets of values can quickly become cumbersome and would re-
quire a metric for survivability be extracted from the upper and lower probabilities
of a cell. Having one map that then represents the survivability metric for each cell
makes this process much faster as the pre-computation has been done, and it also
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makes it possible to modify any existing path planning algorithm to make it suit-
able to calculate the most survivable paths easier. For these reasons we create the
planning map from the two imprecise probability maps by the following formula
5.1.

P = P(1− (P− P)) (5.1)

This equation wraps up the survivability of the cell as being the lower probability
which our belief by our confidence in the probability values of this cell given by the
complement of the difference in probabilities between the upper and lower proba-
bilities. The creation of the planning map from the imprecise probability map repre-
sentation provides the map as given in figure 5.1. This is created by the updateIPMAP
node and published for the survivable path planner to use.

5.3 Modified RRT for survivable path planning

In order to find the most survivable path from the planning map we use a sampling
based planning algorithm of a modified RRT. The algorithm of the modified RRT
is shown in figure 5.2. In practice we dilate the obstacles in the map by the radius
of the robot to first find the configuration space of the robot before starting to plan.
This ensures that we only sample points that the robot can safely be positioned at.
Similarly the local planner also dilates its obstacle to create a local cost-map for nav-
igation.

FIGURE 5.2: The modified RRT pseudoscode

The modified RRT works along the same basic principle as the basic RRT algo-
rithm. We first introduce a max risk term that is one of the planners global parame-
ters along with the global target position. The max risk term denotes the max value
of survivability that the planner is willing to sample before considering the cell un-
survivable. We start the RRT planner by initializing the RRT tree T by adding the
current starting point of the robot. The tree will contain all the nodes that are sam-
pled and have survivable path to them from the current position. The current risk to
start out is set to the lowest possible risk from the whole map, and as we use up all
the lowest risk cells we will have to increase our risk by the stepSize variable, until
we either find a path to the target or we reach the max risk term threshold. At each
iteration we first sample from the map by looking at only cell with a risk less than or
equal to the current risk and use this as our random point. However for every 5th
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sampling we make the random point equal the target cell as we want to encourage
exploring the tree in the general direction towards the target. Then the closest node
in the tree to the random point is found and if it is within delta L2 metric distance
away and has no obstacle between them, then it is added to the tree. If not then a
point delta away along the closest node, random point vector is checked for colli-
sion with any obstacles between them and if not then added to the tree. Otherwise
we move onto the next iteration. If we reach the max number of iterations then we
make sure to reset it and to increase our current risk level so as to continue exploring
the next most survivable cells in the map. Hence by systematically sampling for the
most survivable cells first we can nearly guarantee to find a path that is the most
survivable.

Sample results for the world scenario considered so far using the modified RRT
algorithm is shown in the figures 5.3 and 5.4. The black nodes represent the tree that
was built and the green nodes are the nodes in the tree which are part of the path
to the target. Both these paths were found within the specified max iteration limit
of 1000 iterations and their respective waypoints for the these paths were published
to allow the local planner to plan the paths between the way points by taking into
account the constraints of the robot itself and using obstacle avoidance to prevent
running into any objects.

FIGURE 5.3: The planning map with global survivable path planned
to target position (4,0.35)

While the above figures show the scenario when a path is found to the target,
if there was no path found then the node actively asks the human explicitly if any
path exists, and if the answer is yes the human is asked if he wants to increase the
max risk level and continue path planning to find a new path to the target or simply
stop and return to previous robot position. In this way the robot is able to get the
information it needs to continue to path plan and to get to the target position to
finish its mission.
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FIGURE 5.4: The planning map with global survivable path planned
to target position (5,5)
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Chapter 6

Summary and Conclusion

6.1 Summary of the research and Conclusion

This research was about trying to devise a method that could help improve the safety
of navigation of individual robots in a human-robot team in the backdrop of post-
disaster scenarios such as a building collapse. The main issues that makes navi-
gation hard in these scenarios are that the environment tends to be very cluttered,
hazardous to our robot and potentially unknown. However, in this research we con-
sidered the specific idea of human teammates in the human robot team, trying to
help out the robots in modeling potentially un-modeled hazards in their neighbor-
hood by passing on this information to the robots through speech in natural lan-
guage. This provided many challenges in our hazard modeling task such as the
creation of the quantitative model of the hazard from inherently imprecise human
input, and creation of the maps and how to update it given that we don’t have a
model for the human sensor. Finally planning in this map to find the most surviv-
able paths was also one of challenges. We have tackled these challenges by using
a novel map representation using imprecise probabilities, and created and updated
our current maps using an ARMA based technique. We modeled the undetected
hazards and integrated the human input to the map using imprecise probabilities
and the metrics defined. We then created a modified RRT algorithm to find the most
survivable paths in our maps. To bring it all together we have created a ROS package
that integrates all these different processes so that we can create a mixed initiative
survivable path planner that can receive and integrate human inputs for finding the
most survivable paths in the map.

6.2 Future work

There is still much more that can be done to improve the methods that we have used.
To continue there needs to some additional extensive testing conducted using a local
planner that is integrated with the ROS package. Then the tests have to be conducted
in both simulations and in real life to see the measured effectiveness of our method as
opposed to already existing methods that are human advisory information agnostic.
The ROS package should also be given a good speech recognizer to parse the human
input into the spatial specification. The research has been one of a possibly few that
have used imprecise probabilities in path planning, and this is sub area that needs to
be studied deeper. Imprecise probabilities have been helpful in capturing the human
input in our research and has some advantages over Bayesian probability such as
the automatic confidence level on the probability that is not available in Bayesian
probabilities. Hence, the use of imprecise probabilities in path planning and more
robotics application is certainly worth looking into as well.
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